

Answer on Question#40104, Physics, Electrodynamics

Q , $2Q$, $3Q$ AND $4Q$ CHARGES ARE PLACED AT THE FOUR CORNERS OF A SQUARE. THE FIELD AT THE CENTRE P OF THE SQUARE HAS THE DIRECTION ALONG -

1. AB 2. CB 3. AC 4. BD.

Solution:

The electric field at a distance r from a point charge Q is given by

$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

If Q is positive, the field is directed radially away from Q . Let $PA = PB = PC = PD = r$. Then the electric field at P due to charge $2q$ at B is

$$E_1 = \frac{1}{4\pi\epsilon_0} \frac{2q}{r^2} \text{ along } PD$$

The electric field at P due to charge $4q$ at D is

$$E_2 = \frac{1}{4\pi\epsilon_0} \frac{4q}{r^2} \text{ along } PB$$

$$\text{Net field along } PB \text{ is } E = E_2 - E_1 = \frac{1}{4\pi\epsilon_0} \frac{2q}{r^2}$$

Similarly, the net electric field at P due to charges q and $3q$ at A and C will be

$$E' = \frac{1}{4\pi\epsilon_0} \frac{2q}{r^2} \text{ directed along } PA.$$

Thus $E = E'$, but they are mutually perpendicular to each other, therefore, their resultant will be along PQ which is parallel to CB . Hence the correct choice is (b)

Answer: (b)