Answer on Question\#40104, Physics, Electrodynamics

Q, $2 \mathrm{Q}, 3 \mathrm{Q}$ AND 4 Q CHARGES ARE PLACED AT THE FOUR CORNERS OF A SQUARE.THE FIELD AT THE CENTRE P OF THE SQUARE HAS THE DIRECTION ALONG -

1. $A B$ 2. $C B$ 3. $A C$ 4. $B D$.

Solution:

The electric field at a distance r from a point charge Q is given by

$$
E=\frac{1}{4 \pi \varepsilon_{0}}=\frac{Q}{r^{2}}
$$

If Q is positive, the field is directed radially away from Q. Let $P A=$ $P B=P C=P D=r$. Then the electric field at P due to charge $2 q$ at B is
$E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{r^{2}}$ along $P D$
The electric field at P due to charge $4 q$ at D is
$E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 q}{r^{2}}$ along $P B$
Net field along $P B$ is $E=E_{2}-E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{r^{2}}$
Similarly, the net electric field at P due to charges q and $3 q$ at A and C will be
$E^{\prime}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{r^{2}}$ directed along $P A$.
Thus $E=E^{\prime}$, but they are mutually perpendicular to each other, therefore, their resultant will be along $P Q$ which is parallel to $C B$. Hence the correct choice is (b)

Answer: (b)

