Answer on Question\#40102, Physics, Electrodynamics

TWO EQUAL POSITIVE CHARGES ARE KEPT AT POINTS A AND B. THE ELECTRIC POTENTIAL AT THE POINTS BETWEEN A AND B IS STUDIED WHILE MOVING FROM A TO B. THE POTENTIAL-

1. CONTINUOUSLY INCREASES
2. CONTINUOUSLY DECREASES
3. INCREASES THEN DECREASES
4. DECREASES THEN INCREASES

Solution

Let's consider point x between the charges. The distance between the first charge (A) and point X is x. The distance between the second charge (B) and point X is $r-x$.

The electric potential at any point is the algebraic sum of the potential at that point due to each individual charge. Therefore, the potential at the point x between the charges is

$$
V=\frac{k q}{x}+\frac{k q}{r-x}
$$

Let's find derivative of $V(x)$:

$$
\frac{d V}{d x}=\frac{d}{d x}\left(\frac{k q}{x}+\frac{k q}{r-x}\right)=k q\left(-\frac{1}{x^{2}}+\frac{1}{(r-x)^{2}}\right)=k q \frac{x^{2}-(r-x)^{2}}{x^{2}(r-x)^{2}}
$$

This function is negative when $x<\frac{r}{2}$ - the potential decreases to middle of distance, the function is positive when $x>\frac{r}{2}$ - the potential increases to point B .

Answer: 4. DECREASES THEN INCREASES.

