Answer on Question\#39995 - Physics - Mechanics | Kinametics | Dynamics

A 2400 W engine pulls a 200 kg block at constant speed up a 12.0 m long, 25.0° incline. Determine long does it takes to cover this distance

Solution:

$\mathrm{mg}=200 \mathrm{~kg}-$ mass of the block;
$\alpha=25^{\circ}-$ angle of the plane with the horizontal;
$\mathrm{P}=2400 \mathrm{~W}-$ power of the engine;
$\mathrm{S}=12.0 \mathrm{~m}-$ traveled distance
F - force which engine acts of the block
The first law of equilibrium ($V=$ const) along the X axis:
$\mathrm{F}-\mathrm{mg}_{\mathrm{x}}=0$
$\mathrm{F}=\mathrm{mg}_{\mathrm{x}}$
From the right triangle $A B C$:
$\sin \alpha=\frac{\mathrm{mg}_{\mathrm{x}}}{\mathrm{mg}} ; \mathrm{mg}_{\mathrm{x}}=\mathrm{mg} \cdot \sin \alpha$
(2)in(1):
$\mathrm{F}=\mathrm{mg} \cdot \sin \alpha$
Work done by the engine:
$\mathrm{A}=\mathrm{F} \cdot \mathrm{S}=\mathrm{mg} \cdot \mathrm{S} \sin \alpha$
Formula of the power (t - time of the work):
$\mathrm{P}=\frac{\mathrm{A}}{\mathrm{t}} \Rightarrow \mathrm{t}=\frac{\mathrm{A}}{\mathrm{P}}=\frac{\mathrm{mg} \cdot \mathrm{S} \sin \alpha}{\mathrm{P}}=\frac{200 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~N}}{\mathrm{~kg}} \cdot 12 \mathrm{~m} \cdot \sin 25^{\circ}}{2400 \mathrm{~W}}=4.1 \mathrm{~s}$
Answer: time to cover distance 12 m is equal to 4.1 s

