The speed of an airplane is .ms12001- The engines take in 80 kg of air per second and mix it with 40 kg of fuel. This mixture is expelled after it ignites and it moves at a velocity of 1 ms 3000 -relative to the airplane. Calculate the thrust of the engine

Solution

Thrust is a reaction force described quantitatively by Newton's second and third laws. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction on that system.

From Newton's second law of motion a force F on an object is equal to the rate of change of its momentum

$$
F=\frac{d p}{d t}=\frac{d(m v)}{d t} .
$$

We can find this force using mass that enters the airplane and mass that comes out of it:

$$
F=\frac{d m_{\text {out }}}{d t} \cdot v_{\text {out }}-\frac{d m_{\text {in }}}{d t} \cdot v_{\text {in }}
$$

where $\frac{d m_{\text {in }}}{d t}$ - the rate of change of mass that enters the airplane, $\frac{d m_{\text {out }}}{d t}$ - the rate of change of mass that comes out of airplane, $v_{\text {in }}=1200 \frac{\mathrm{~m}}{\mathrm{~s}}$ - velocity of an air which enters the airplane, $v_{\text {out }}=3000 \frac{\mathrm{~m}}{\mathrm{~s}}$ velocity of a fuel and an air that comes out of the airplane.

$$
\frac{d m_{\text {in }}}{d t}=80 \frac{\mathrm{~kg}}{\mathrm{~s}} ; \frac{d m_{\text {out }}}{d t}=(80+40) \frac{\mathrm{kg}}{\mathrm{~s}}=120 \frac{\mathrm{~kg}}{\mathrm{~s}} .
$$

The thrust of the engine:

$$
F=120 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot 3000 \frac{\mathrm{~m}}{\mathrm{~s}}-80 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot 1200 \frac{\mathrm{~m}}{\mathrm{~s}}=264000 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}=264 \mathrm{kN} .
$$

Answer: 264 kN.

