

Answer on Question #39994, Physics, Mechanics | Kinematics | Dynamics

The speed of an airplane is 1200 m/s . The engines take in 80 kg of air per second and mix it with 40 kg of fuel. This mixture is expelled after it ignites and it moves at a velocity of 3000 m/s relative to the airplane. Calculate the thrust of the engine.

Solution

Thrust is a reaction force described quantitatively by Newton's second and third laws. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction on that system.

From Newton's second law of motion a force F on an object is equal to the rate of change of its momentum

$$F = \frac{dp}{dt} = \frac{d(mv)}{dt}.$$

We can find this force using mass that enters the airplane and mass that comes out of it:

$$F = \frac{dm_{\text{out}}}{dt} \cdot v_{\text{out}} - \frac{dm_{\text{in}}}{dt} \cdot v_{\text{in}},$$

where $\frac{dm_{\text{in}}}{dt}$ - the rate of change of mass that enters the airplane, $\frac{dm_{\text{out}}}{dt}$ - the rate of change of mass that comes out of airplane, $v_{\text{in}} = 1200 \frac{\text{m}}{\text{s}}$ - velocity of an air which enters the airplane, $v_{\text{out}} = 3000 \frac{\text{m}}{\text{s}}$ - velocity of a fuel and an air that comes out of the airplane.

$$\frac{dm_{\text{in}}}{dt} = 80 \frac{\text{kg}}{\text{s}}; \frac{dm_{\text{out}}}{dt} = (80 + 40) \frac{\text{kg}}{\text{s}} = 120 \frac{\text{kg}}{\text{s}}.$$

The thrust of the engine:

$$F = 120 \frac{\text{kg}}{\text{s}} \cdot 3000 \frac{\text{m}}{\text{s}} - 80 \frac{\text{kg}}{\text{s}} \cdot 1200 \frac{\text{m}}{\text{s}} = 264000 \frac{\text{kg} \cdot \text{m}}{\text{s}^2} = 264 \text{ kN}.$$

Answer: 264 kN.