Answer on Question \#39930 - Physics - Mechanics | Kinametics | Dynamics

1. A circular disc rotates on a thin air film with a period of 0.3 second. Its moment of inertia about its axis of rotation is $0.06 \mathrm{~kg} / \mathrm{m} * 2$. A small mass is dropped onto the disc and rotates with it. The moment of inertia of the mass about axis of rotation is $0.04 \mathrm{~kg} / \mathrm{m} * 2$. Determine final period of rotating disc and mass.

$T=0.3 \mathrm{~s}$
$I=0.06 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$I_{1}=0.04 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$T_{1}, m-?$

Solution.

The angular velocity of the disc is $\omega=\frac{2 \pi}{T}$.
The momentum of the disc is $L=I \omega=\frac{2 \pi I}{T}$.
The momentum of the conservative system keeps the constant. So, $L=\frac{2 \pi I}{T}=\left(I+I_{1}\right) \omega_{1}$ and new angular velocity becomes $\omega_{1}=\frac{2 \pi I}{T\left(I+I_{1}\right)}$.

Thus, new period equals to $T_{1}=\frac{2 \pi}{\omega_{1}}, T_{1}=\left(1+\frac{I_{1}}{I}\right) T$.
The moment of inertia of the mass about axis of rotation is $I_{1}=m r^{2}$, where r is distance from the mass to the axis. So, $m=I_{1} / r^{2}$. As there is no info about this distance, we cannot evaluate it and this quantity remains in symbolic form.

Let check the dimensions.
$\left[T_{1}\right]=s, \quad[m]=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~m}^{2}}=k g$.
Let evaluate the quantities.
$T_{1}=\left(1+\frac{0.04}{0.06}\right) \cdot 0.3=0.5(s)$.
Answer: $0.5 \mathrm{~s}, \mathrm{~m}=\frac{I_{1}}{r^{2}}$.

