Answer on Question\#39911, Physics, Mechanics

Question:

Obtain an expression for the time period of a satellite orbiting the earth. A space shuttle is in a circular orbit at a height of 250 km from the earth's surface, where the acceleration due to earth's gravity is 0.93 g . calculate the period of its orbit. Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}-2$ and the radius of the earth $\mathrm{R}=6370000 \mathrm{~m}$.

Answer:

Newton's second law of motion:

$$
\frac{m v^{2}}{R+h}=0.93 m g
$$

where $\frac{v^{2}}{R+h}$ is centripetal acceleration, 0.93 mg is gravitational force.
Therefore, speed of motion equals:

$$
v=\sqrt{0.93 g(R+h)}
$$

Period equals:

$$
T=\frac{2 \pi(R+h)}{v}=2 \pi \sqrt{\frac{R+h}{0.93 g}} \cong 5400 \mathrm{~s}
$$

Answer: $5400 s$

