Answer on Question\#39900 - Physics - Mechanics

A particle travels half of distance of a straight journey with speed $6 \mathrm{~m} / \mathrm{s}$.the remaining part of the distance is covered with speed $2 \mathrm{~m} / \mathrm{s}$ for half of the time of remaining journey and with speed $4 \mathrm{~m} / \mathrm{s}$ for other half of time .the average speed of the particle is?

Solution:

$V_{1}=6 \frac{\mathrm{~m}}{\mathrm{~s}}-$ speed on the first half of distance;
$V_{2}=2 \frac{\mathrm{~m}}{\mathrm{~s}}$ - speed on the first half of the time of remaining journey;
$V_{3}=4 \frac{\mathrm{~m}}{\mathrm{~s}}$ - speed on the second half of the time of remaining journey;
Let the total straight line distance be x . Time taken to cover $\frac{\mathrm{x}}{2}$ distance :

$$
\mathrm{t}_{1}=\frac{\frac{\mathrm{x}}{2}}{\mathrm{v}_{1}}=\frac{\mathrm{x}}{2 \mathrm{~V}_{1}}
$$

Distance left after travelling after $\frac{1}{2} \mathrm{x}$

$$
x-\frac{x}{2}=\frac{1}{2} x
$$

Let time t_{2} is taken to travel the rest $\frac{1}{2} \mathrm{x}$ distance
Distance covered with $V_{2}=2 \frac{\mathrm{~m}}{\mathrm{~s}}$:

$$
d_{2}=V_{2} \times \frac{t_{2}}{2}
$$

Distance covered with $\mathrm{V}_{3}=4 \frac{\mathrm{~m}}{\mathrm{~s}}$:

$$
\begin{gathered}
d_{3}=V_{3} \times \frac{t_{2}}{2} \\
d_{2}+d_{3}=\frac{1}{2} \mathrm{x} \\
\mathrm{~V}_{2} \times \frac{\mathrm{t}_{2}}{2}+\mathrm{V}_{3} \times \frac{\mathrm{t}_{2}}{2}=\frac{1}{2} \mathrm{x} \\
\mathrm{t}_{2}\left(\mathrm{~V}_{2}+\mathrm{V}_{3}\right)=\mathrm{x} \\
\mathrm{t}_{2}=\frac{x}{\mathrm{~V}_{2}+\mathrm{V}_{3}}
\end{gathered}
$$

Total time taken to cover the distance:

$$
\mathrm{t}_{1}+\mathrm{t}_{2}=\frac{\mathrm{x}}{2 \mathrm{~V}_{1}}+\frac{x}{\mathrm{~V}_{2}+\mathrm{V}_{3}}=\frac{x\left(\mathrm{~V}_{2}+\mathrm{V}_{3}+2 \mathrm{~V}_{1}\right)}{2 \mathrm{~V}_{1}\left(\mathrm{~V}_{2}+\mathrm{V}_{3}\right)}
$$

Now average speed :

$$
\begin{aligned}
& V_{\text {average }}=\frac{x}{t_{1}}+t_{2}=\frac{x}{\frac{x\left(V_{2}+V_{3}+2 V_{1}\right)}{2 V_{1}\left(V_{2}+V_{3}\right)}}=\frac{2 V_{1}\left(V_{2}+V_{3}\right)}{V_{2}+V_{3}+2 V_{1}}=\frac{2 \cdot 6 \frac{m}{s}\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}+4 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{2 \frac{\mathrm{~m}}{\mathrm{~s}}+4 \frac{\mathrm{~m}}{\mathrm{~s}}+2 \cdot 6 \frac{\mathrm{~m}}{\mathrm{~s}}} \\
&=4 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: average speed of particle is equal to $4 \frac{\mathrm{~m}}{\mathrm{~s}}$.

