Answer on Question\#39898 - Physics - Mechanics

An object travelling in straight line with $x=(t s q u a r e-4 t+8) m$ find average speed and average velocity in time interval $\mathrm{t}=0$ to $\mathrm{t}=5$

Solution:

Average velocity $v_{\text {avg }}$ is the ratio of the displacement $D x$ that occurs during a particular time interval $D t$ to that interval:

$$
\begin{aligned}
v_{\text {avg }}=\frac{\Delta x}{\Delta t}= & \frac{x_{2}\left(t_{2}\right)-x_{1}\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\left(5^{2}-4 \cdot 5+8\right)-\left(0^{2}-4 \cdot 0+8\right)}{5 s-0}=\frac{25 m-20 \mathrm{~m}}{5 s} \\
& =1 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Average speed $s_{a v g}$ is a different way of describing "how fast" a particle moves. Whereas the average velocity involves the particle's displacement $D x$, the average speed involves the total distance covered (for example, the number of meters moved), independent of direction; that is,

$$
\begin{gathered}
v_{\text {avg }}=\frac{\text { total distance }}{\Delta t} \\
x(t)=t^{2}-4 t+8 \\
V(t)=x^{\prime}(t)=2 t-4=0 \text { at } t=2 s
\end{gathered}
$$

Distance covered from $t=0$ to $t=2$ is $|x(2)-x(0)|=\mid\left(2^{2}-4 \cdot 2+8\right)-$ $\left(0^{2}-4 \cdot 0+8\right) \mid=4 m$
Distance covered from $t=2$ to $t=5$ is $|x(5)-x(2)|=\mid\left(5^{2}-4 \cdot 5+8\right)-$ $\left(2^{2}-4 \cdot 2+8\right) \mid=9 m$

$$
v_{\text {avg }}=\frac{4 m+9 m}{5 s}=2.6 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: Average velocity is equal to $1 \frac{\mathrm{~m}}{\mathrm{~s}}$;
Average speed is equal to $2.6 \frac{\mathrm{~m}}{\mathrm{~s}}$.

