Answer on Question\#39809 - Physics - Electromagnetism

Three charges $+3 q,+q$ and Q are placed on a straight line with equal separation. In order to make the net force on q to be zero, the value of Q will be=?

Solution:

To calculate net force, we simply calculate the forces on $+q$ due to $+3 q$ and Q separately and then add these forces together. In each case, the force exerted by one charge on another charge can be calculated from Coulomb's law.

$$
\begin{gather*}
\overline{\mathrm{F}}_{\mathrm{net}}=\overline{\mathrm{F}}_{3 \mathrm{q}, \mathrm{q}}+\overline{\mathrm{F}}_{\mathrm{Q}, \mathrm{q}} \\
\mathrm{x}: \mathrm{F}_{\mathrm{net}}=\mathrm{F}_{3 \mathrm{q}, \mathrm{q}}-\mathrm{F}_{\mathrm{Q}, \mathrm{q}}=0 \tag{1}\\
\mathrm{~F}_{3 \mathrm{q}, \mathrm{q}}=\mathrm{k} \frac{3 \mathrm{q} \cdot \mathrm{q}}{\mathrm{r}^{2}} \tag{2}\\
\mathrm{~F}_{\mathrm{Q}, \mathrm{q}}=\mathrm{k} \frac{\mathrm{Q} \cdot \mathrm{q}}{\mathrm{r}^{2}} \tag{3}\\
(3) \operatorname{l2nd}(2) \operatorname{in}(1): \\
\mathrm{k} \frac{3 \mathrm{q} \cdot \mathrm{q}}{\mathrm{r}^{2}}-\mathrm{k} \frac{\mathrm{Q} \cdot \mathrm{q}}{\mathrm{r}^{2}}=0 \\
\mathrm{Q}=+3 \mathrm{q}
\end{gather*}
$$

Answer: the value of Q will be +3 q .

