One mole of oxygen at STP is adiabatically compressed to 5 atm. Calculate the final temperature. Also, calculate the work done on the gas. Take $\mathrm{g}=1.4$ and $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}{ }^{\wedge}-1 \mathrm{~K}^{\wedge}-1$.

Solution

The equation of adiabatic process for an ideal gas is

$$
P V^{\gamma}=\text { const }
$$

where P is pressure, V is volume, and $\gamma=1.4$ - the adiabatic index of gas.
Also we know the state equation for an ideal gas:

$$
P V=v R T
$$

where v is the amount of substance of gas, T is the temperature of the gas and R is the universal gas constant.

So

$$
V=\frac{v R T}{P} \text { and } P\left(\frac{v R T}{P}\right)^{\gamma}=\text { const } \rightarrow P^{1-\gamma} \cdot T^{\gamma}=\text { const } .
$$

Hence

$$
P_{1}^{1-\gamma} \cdot T_{1}^{\gamma}=P_{2}^{1-\gamma} \cdot T_{2}^{\gamma} \rightarrow T_{2}=\left(\frac{P_{1}^{1-\gamma} \cdot T_{1}^{\gamma}}{P_{2}^{1-\gamma}}\right)^{\frac{1}{\gamma}}
$$

STP is $\left(P_{1}=100 \mathrm{kPa}, T_{1}=273 \mathrm{~K}\right), P_{2}=507 \mathrm{kPa}$.

$$
T_{2}=\left(\frac{\left(100 \cdot 10^{3}\right)^{1-1.4} \cdot 273^{1.4}}{\left(507 \cdot 10^{3}\right)^{1-1.4}}\right)^{\frac{1}{1.4}}=434 K
$$

The work done on the gas in adiabatic process is

$$
W=\frac{\alpha}{2} v R T_{1}\left(\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right)
$$

where $\alpha=\frac{2}{\gamma-1}=5$.

$$
W=\frac{5}{2} \cdot 1 \cdot 8.31 \cdot 273\left(\left(\frac{507 \cdot 10^{3}}{100 \cdot 10^{3}}\right)^{\frac{1.4-1}{1.4}}-1\right)=331 \mathrm{~J}
$$

Answer: $434 \mathrm{~K} ; 331 \mathrm{~J}$.

