a) 1 kg of water at 0 oC (degree Celsius) is fully converted into steam at $100^{\circ} \mathrm{C}$ at normal pressure. Calculate the change in entropy. The specific heat capacity of water is $4.18 \times 10^{\wedge} 3 \mathrm{JKg}{ }^{\wedge}-1 \mathrm{~K}^{\wedge}-1$ and latent heat of vaporization is $2.24 \times 10^{\wedge} 6 \mathrm{JKg}^{\wedge}-1$.

Solution

Entropy is the reversible enthalpy change of a process divided by T. Assuming the heat changes in the given situations to be reversible in nature:

$$
\Delta S=\Delta S_{\text {heating }}+\Delta S_{\text {vaporizing }}=\int\left(\frac{d q_{r e v}}{T}\right)+\frac{q_{2}}{T_{\text {steam }}}
$$

For heating up of water,

$$
q=m \cdot c \cdot d T
$$

where c is the specific heat of water.
Thus,

$$
\begin{gathered}
\Delta S_{\text {heating }}=\int m c\left(\frac{d T}{T}\right)=m c \ln \frac{T_{2}}{T_{1}} \\
q_{2}=m \cdot L
\end{gathered}
$$

with L the latent heat of vaporization.
Therefore,

$$
\Delta S=m c \ln \frac{T_{2}}{T_{1}}+\frac{m \cdot L}{T_{2}}=1 \mathrm{~kg} \cdot 4.18 \cdot 10^{3} \frac{\mathrm{~J}}{\mathrm{~kg} \mathrm{~K}} \cdot \ln \left(\frac{373}{273}\right)+\frac{1 \mathrm{~kg} \cdot 2.24 \cdot 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}}}{373 \mathrm{~K}}=7.31 \frac{\mathrm{~kJ}}{\mathrm{~K}}
$$

Answer: $7.31 \frac{\mathrm{~kJ}}{\mathrm{~K}}$.
b) Calculate the work done by one mole of a van der Waals' gas if during its isothermal expansion its volume increases from $1 \mathrm{~m}^{\wedge} 3$ to $2 \mathrm{~m}^{\wedge} 3$ at a temperature 300 K . Take $\mathrm{a}=1.39 \times 10^{\wedge}-6$ atm $\mathrm{m}^{\wedge} 6 \mathrm{~mol} \mathrm{~m}^{\wedge}-2$ and $b=39.1 \times 10^{\wedge}-6 \mathrm{~m}^{\wedge} 3 \mathrm{~mol}{ }^{\wedge}-1$.

Solution

The work done by one mole of gas is

$$
W=\int_{v_{1}}^{v_{2}} p d v
$$

where v is the molar volume.
The Van der Waals equation of state for 1 mole of gas is:

$$
\left(p+\frac{a}{v^{2}}\right) \cdot(v-b)=R T
$$

From this equation we can obtain that:

$$
p=\frac{R T}{v-b}-\frac{a}{v^{2}} .
$$

The work done by one mole of a van der Waals' gas is

$$
W=\int_{v_{1}}^{v_{2}}\left(\frac{R T}{v-b}-\frac{a}{v^{2}}\right) d v=\int_{v_{1}}^{v_{2}}\left(\frac{R T}{v-b}\right) d v-\int_{v_{1}}^{v_{2}}\left(\frac{a}{v^{2}}\right) d v=R T \ln \frac{v_{2}-b}{v_{1}-b}+a\left(\frac{1}{v_{2}}-\frac{1}{v_{1}}\right) .
$$

We can obtain a in SI units:

$$
a=1.39 \cdot 10^{-6} \cdot 1.01325 \cdot 10^{5} \cdot \mathrm{~N} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~m}^{6} \cdot \mathrm{~mol}^{-2}=0.141 \mathrm{~N} \cdot \mathrm{~m}^{4} \cdot \mathrm{~mol}^{-2}
$$

So

$$
W=8.31 \cdot 300 \cdot \ln \frac{2-39.1 \cdot 10^{-6}}{1-39.1 \cdot 10^{-6}}+0.141\left(\frac{1}{2}-\frac{1}{1}\right)=1.73 \mathrm{~kJ} .
$$

Answer: 1.73 kJ .

