Answer on Question\#39761 - Physics - Other

A student repeatedly measured the length of a simple pendulum and recorded the results in centimetre as: $36.9,36.7,36.8$ and 36.6 . What is the precision index of this measurement in cm?

Solution:

Therefore, it is quite common to forego the complete information provided by the error distribution and instead to describe the errors by an error or precision index. We typically write:

$$
\mathrm{x}_{\text {exact }}=\mathrm{x}_{\text {observed }} \pm \Delta \mathrm{x}
$$

where $\Delta \mathrm{x}$ is the precision index or error. Note that the definition of $\Delta \mathrm{x}$ can be ambiguous. It is a single number used to characterize the actual distribution of errors. Some choose to define Δx in terms of the standard deviation of the distribution, s:

$$
\begin{gather*}
\mathrm{s}=\frac{1}{\mathrm{n}-1} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right]^{2} \tag{1}\\
\overline{\mathrm{x}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \tag{2}
\end{gather*}
$$

Table with the results of experiment:

n	1	2	3	4
$x, \mathrm{~cm}$	36.9	36.7	36.8	36.6

(2): $\bar{x}=\frac{1}{4} \sum_{i=1}^{4} x_{i}=\frac{1}{4}(36.9+36.7+36.8+36.6)=36.75$
(3)in(1):

$$
\begin{aligned}
s=\frac{1}{4-1} \sum_{i=1}^{4}[& \left.x_{i}-\bar{x}\right]^{2} \\
& =\frac{1}{4-1}(36.9-36.75)^{2}(36.75-36.7)^{2}(36.8-36.75)^{2}(36.75 \\
& -36.6)^{2}=1 \times 10^{-9} \mathrm{~cm}
\end{aligned}
$$

The magnitude of Δx can then be defined as some multiple of s. So a measurement might be reported as:

$$
\begin{gathered}
\mathrm{x}_{\text {exact }}=\overline{\mathrm{x}} \pm 2 \mathrm{~s} \Rightarrow \\
\Delta \mathrm{x}=2 \mathrm{~s}=2 \times 10^{-9} \mathrm{~cm}
\end{gathered}
$$

Solution: precision index of this measurement is equal to $2 \times 10^{-9} \mathrm{~cm}$.

