Answer on Question\#39741, Physics, Other
A gardener wishes the water from his hose was able to reach flowers 3 m away when he holds the nozzle horizontally at a height of 1 m . He finds out that the water has a speed of $6.64 \mathrm{~m} / \mathrm{s}$ when it leaves his hose. The nozzle of his hose has an inner diameter of 1.5 cm . The other end is connected to a pipe with an inner diameter of 2 cm . What must the pressure in the exit pipe be for the water from his hose to reach his flowers?

## Solution

According to the conservation of mass law:

$$
v_{1} A_{1}=v_{2} A_{2}
$$

where $v_{1}$ - speed of water in the pipe, $v_{2}$ - speed of water in the hose, $A_{1}$ - inner area of pipe, $A_{2}$ - inner area of hose.

According to Bernoulli law:

$$
P+\frac{\rho v_{1}^{2}}{2}=\frac{\rho v_{2}^{2}}{2}
$$

where $P$ - the pressure in the exit pipe, $\rho$ - density of water.

$$
\begin{gathered}
P=\frac{\rho v_{2}^{2}}{2}-\frac{\rho v_{1}^{2}}{2}=\frac{\rho}{2}\left(v_{2}^{2}-v_{1}^{2}\right)=\frac{\rho v_{2}^{2}}{2}\left(1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right)=\frac{\rho v_{2}^{2}}{2}\left(1-\left(\frac{d_{2}}{d_{1}}\right)^{4}\right) . \\
P=\frac{1000 \cdot 6.64^{2}}{2}\left(1-\left(\frac{1.5}{2}\right)^{4}\right)=15 \mathrm{kPa} .
\end{gathered}
$$

Answer: 15 kPa.

