Answer on Question\#39726, Physics, Mechanics

Question:

A heavy solid sphere is thrown on a horizontal rough surface with initial velocity $7 \mathrm{~m} / \mathrm{s}$ without rolling. When it starts pure rolling motion, then its speed will be??

Solution:

For translational motion we have

$$
m a=-\mu m g
$$

where μ is the coefficient of friction
So

$$
a=-\mu g
$$

After time t velocity is

$$
v=v_{0}+a t=v_{0}-\mu g t
$$

For rotational motion about centre a net torque acting upon an object will produce an angular acceleration of the object according to

$$
\begin{gathered}
\tau=I \alpha \\
\mu m g r=I \alpha
\end{gathered}
$$

where r is radius of sphere, l is moment of inertia, α is angular accleration
The moment of inertia of solid sphere of radius r and mass m is

$$
I=\frac{2 m r^{2}}{5}
$$

So

$$
\begin{aligned}
\mu m g r & =\frac{2 m r^{2}}{5} \alpha \\
\alpha & =\frac{5 \mu g}{2 r}
\end{aligned}
$$

The angular velocity is

$$
\begin{aligned}
& \omega=0+\alpha t \\
& \omega=\frac{5 \mu g}{2 r} t
\end{aligned}
$$

For pure rolling motion

$$
v=r \omega
$$

So

$$
\begin{gathered}
v_{0}-\mu g t=r \frac{5 \mu g}{2 r} t \\
v_{0}=\mu g t+\frac{5 \mu g t}{2}=\frac{7 \mu g t}{2}
\end{gathered}
$$

From this equation

$$
t=\frac{2 v_{0}}{7 \mu g}
$$

Now we put t in equation for v

$$
\begin{gathered}
v=v_{0}-\mu g t=v_{0}-\frac{\mu g 2 v_{0}}{7 \mu g}=v_{0}-\frac{2 v_{0}}{7}=\frac{5 v_{0}}{7} \\
v=\frac{5 \cdot 7}{7}=5 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer. $v=5 \mathrm{~m} / \mathrm{s}$.

