Answer on Question\#39725, Physics, Mechanics

The linear mass density of a rod of length 1 meter is $\mathrm{P}=(4+\mathrm{X})$, then the position of centre of mass from $X=0$ end of the rod is?

Solution:

The center of mass of a continuous object is located at

$$
\vec{r}_{C M}=\frac{\int \vec{r} d m}{\int d m}
$$

The denominator is the total mass of the rod.

$$
\int d m=M
$$

Since the rod is thin and lies on the x axis, $\mathrm{r}=\mathrm{x}$, where the sign of x would indicate the direction. The linear mass density is the mass per unit length

$$
\begin{gathered}
P=(4+x)=\frac{d m}{d x} \\
d m=P d x=(4+x) d x
\end{gathered}
$$

Thus

$$
\begin{gathered}
\int d m=M=\int_{0}^{1}(4+x) d x=\left.\left(4 x+\frac{x^{2}}{2}\right)\right|_{0} ^{1}=4+\frac{1}{2}=4.5 \\
\int r d m=\int_{0}^{1} x(4+x) d x=\int_{0}^{1}\left(4 x+x^{2}\right) d x=\left.\left(\frac{4 x^{2}}{2}+\frac{x^{3}}{3}\right)\right|_{0} ^{1}=2+\frac{1}{3}=2.33
\end{gathered}
$$

The center of mass is at

$$
x_{C M}=\frac{2.33}{4.5}=0.518 \approx 0.52 \mathrm{~m}
$$

Answer. 0.52 m .

