Answer on 39692, Physics, Mechanics | Kinematics | Dynamics

If we have the law for velocity, we have to integrate it with respect to t to get the low motion, that is instantaneous position of the car as a function of time. So we have

$$
s(t)=\int v(t) d t=-6 t^{2}+12 t+C
$$

where C is integration constant, which can be find from given condition $s(0)=5$. We see that

$$
\begin{gathered}
s(0)=-6 \cdot 0^{2}+12 \cdot 0+C=5 \\
C=5
\end{gathered}
$$

Hence, instantaneous position of the car as a function of time is

$$
s(t)=-6 t^{2}+12 t+5
$$

To find acceleration, we have to differentiate the velocity with respect to t

$$
a(t)=\frac{d}{d t} v(t)=-12
$$

Hence, acceleration and $t=2$ seconds is $-12 \mathrm{~m} / \mathrm{s}^{2}$.

