Answer on Question\#39659, Physics, Mechanics

Question:

A skier is gliding along at $2.0 \mathrm{~m} / \mathrm{s}$ on horizontal, frictionless snow. He suddenly starts down a 15° incline. His speed at the bottom is $12 \mathrm{~m} / \mathrm{s}$.

Part A

What is the length of the incline?

Answer:

The law of conservation of energy:

$$
\frac{m v^{2}}{2}+m g h=\text { const }
$$

where h is height, v is speed.

$$
\frac{m v_{0}^{2}}{2}+m g h=\frac{m v^{\prime 2}}{2}
$$

where v_{0} is initial speed, v^{\prime} is speed at the bottom.

$$
h=\frac{v^{\prime 2}-v_{0}^{2}}{2 g}
$$

Distance along incline equals:

$$
L=\frac{h}{\sin 15^{\circ}}=\frac{v^{\prime 2}-v_{0}^{2}}{2 g \sin 15^{\circ}} \cong 28 m
$$

Answer: 28 m

