## Answer on Question\#39645 - Physics - Mechanics | Kinematics | Dynamics

a man swim across a river with speed of Vm perpendicular to the flow of direction of river .if water flows with the speed of Vw , then what is direction of man to cross river $\qquad$ how we place theta in this question $\qquad$ how we know we hv to place theta either in $x$ or $y$ direction $\qquad$ .with resultant velocity pls tell me

## Solution:

$\mathrm{V}_{m}$ - velocity of the man reative to the water;
$\mathrm{V}_{\mathrm{w}}$ - velocity of the current;
First, we can find the angle $\theta$ between the direction of velocity of the water and velocity of the man $\left(\vec{V}_{m}\right.$ and $\vec{V}_{w}$ form a right-angled triangle because $\vec{V}_{m}$ is perpendicular to the flow):

$$
\begin{gathered}
\text { triangle } B D E: X-\text { direction: } \tan \theta=\frac{\mathrm{V}_{m}}{\mathrm{~V}_{\mathrm{w}}} \Rightarrow \\
\theta=\arctan \left(\frac{\mathrm{V}_{m}}{\mathrm{~V}_{\mathrm{w}}}\right) \\
Y-\text { direction: } \sigma=90^{\circ}-\theta=90^{\circ}-\arctan \left(\frac{\mathrm{V}_{m}}{\mathrm{~V}_{\mathrm{w}}}\right)
\end{gathered}
$$

Also we can find resultant velocity using Pythagoras' theorem:

$$
\begin{gathered}
\overrightarrow{\mathrm{V}}_{\text {result }}=\overrightarrow{\mathrm{V}}_{m}+\overrightarrow{\mathrm{V}}_{\mathrm{w}} \\
V_{\text {result }}^{2}=\mathrm{V}_{m}^{2}+\mathrm{V}_{\mathrm{w}}^{2} \Longrightarrow \\
V_{\text {result }}=\sqrt{\mathrm{V}_{m}^{2}+\mathrm{V}_{\mathrm{w}}^{2}}
\end{gathered}
$$

Answer: angle with x-direction: $\theta=\arctan \left(\frac{\mathrm{V}_{m}}{\mathrm{~V}_{\mathrm{w}}}\right)$;
$y$-direction: $\sigma=90^{\circ}-\arctan \left(\frac{\mathrm{V}_{m}}{\mathrm{~V}_{\mathrm{w}}}\right)$;
resultant velocity: $V_{\text {result }}=\sqrt{\mathrm{V}_{m}^{2}+\mathrm{V}_{\mathrm{w}}^{2}}$.


