Answer on Question\#39642 - Physics - Other

A steel ball of vol. 1 cm 3 is recat in a hollow sphere to float in water.what should be the minimum volume of this sphere.

Solution:

$V_{\text {ball }}=1 \mathrm{~cm}^{3}-$ volume of the steel ball;
$\rho_{\text {steel }}=7.8 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}-$ density of the steel;
$\rho_{\text {water }}=1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}-$ density of the water;
Minimum volume should be enough to satisfy the condition of buoyancy
(Archimedes force compensates for the weight of the ball):

$$
\begin{gather*}
\mathrm{m}_{\text {ball }} \mathrm{g}=\rho_{\text {water }} g V_{\text {min }} \tag{1}\\
\mathrm{m}_{\text {ball }}=\mathrm{V}_{\text {ball }} \cdot \rho_{\text {steel }} \tag{2}\\
(2) \text { in }(1): \\
\mathrm{V}_{\text {ball }} \cdot \rho_{\text {steel }}=\rho_{\text {water }} V_{\text {min }} \\
\mathrm{V}_{\text {min }}=\frac{\mathrm{V}_{\text {ball }} \cdot \rho_{\text {steel }}}{\rho_{\text {water }}}=\frac{1 \mathrm{~cm}^{3} \cdot 7.8 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}}{1 \frac{\mathrm{~g}}{\mathrm{~cm}_{2}^{3}}}=7.8 \mathrm{~cm}^{3}
\end{gather*}
$$

Answer: minimum volume of this sphere is $7.8 \mathrm{~cm}^{3}$

