Answer on Question \#39603, Physics, Mechanics | Kinematics | Dynamics

Question:

what is the cross product $A><B$ under mirror reflection

Answer:

If a point of an object has coordinates (x, y, z) then the image of this point (as reflected by a mirror in the y, z plane) has coordinates ($-x, y, z$).

Suppose $\vec{A} \times \vec{B}=\vec{C}$
Therefore, cross product transforms:

$$
\overrightarrow{A^{\prime}} \mathrm{x} \overrightarrow{B^{\prime}}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-A_{x} & A_{y} & A_{z} \\
-B_{x} & B_{y} & B_{z}
\end{array}\right|=\vec{\imath} C_{x}-\vec{\jmath} C_{y}-\vec{k} C_{z}=\left(\begin{array}{c}
C_{x} \\
-C_{y} \\
-C_{z}
\end{array}\right)
$$

Answer: $\overrightarrow{A^{\prime}} \times \overrightarrow{B^{\prime}}=\left(\begin{array}{c}(\vec{A} \times \vec{B})_{x} \\ -(\vec{A} \times \vec{B})_{y} \\ -(\vec{A} \times \vec{B})_{z}\end{array}\right)$

