Answer on Question\#39598 - Physics - Mechanics

A solid cylinder of mass 3 kg is rolling on a horizontal surface with velocity $4 \mathrm{~m} / \mathrm{s}$. It collides with a horizontal spring of force constant $200 \mathrm{~N} / \mathrm{m}$. What will be the maximum compression produced in spring?

Solution:

Here we should apply conservation of mechanical energy .
Kinetic energy of rolling body initially is equal to potential energy of the spring:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{k}}=\mathrm{E}_{\mathrm{p}} \tag{1}
\end{equation*}
$$

Potential energy of the spring ($\Delta \mathrm{x}$ - maximum compression of the spring):

$$
\mathrm{E}_{\mathrm{p}}=\frac{\mathrm{k} \Delta \mathrm{x}^{2}}{2}
$$

Kinetic energy of rolling body $=$ Translational $K E+$ Rotational KE:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{k}}=\frac{\mathrm{mv}}{2}+\frac{\mathrm{J} \omega^{2}}{2} \tag{2}
\end{equation*}
$$

Moment of inertia of solid cylinder:

$$
\begin{equation*}
\mathrm{J}=\frac{\mathrm{mR}^{2}}{2} \tag{3}
\end{equation*}
$$

Angular velocity of the cylinder:

$$
\begin{gather*}
\omega=\frac{v}{\mathrm{R}} \tag{4}\\
\mathrm{E}_{\mathrm{k}}=\frac{(4) \operatorname{mv^{2}}}{2}+\frac{\mathrm{mR}^{2}}{2} \frac{\left(\frac{\mathrm{v}}{\mathrm{R}}\right)^{2}}{2}=\frac{\mathrm{mv}^{2}}{2}+\frac{\mathrm{mv}^{2}}{4}=\frac{3 \mathrm{mv}^{2}}{4} \\
\frac{\mathrm{k} \Delta \mathrm{x}^{2}}{2}=\frac{3 \mathrm{mv}^{2}}{4} \tag{5}\\
\Delta \mathrm{x}=\sqrt{\frac{3 \mathrm{mv}^{2}}{2 \mathrm{k}}}=\sqrt{\frac{3 \cdot 3 \mathrm{~kg} \cdot\left(4 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 200 \frac{\mathrm{~N}}{\mathrm{~m}}}}=0.6 \mathrm{~m}
\end{gather*}
$$

Answer: the maximum compression produced in spring will be 0.6 m .

