## Answer on Question \#39588, Physics, Other

a) A force $F=A[(x / a)-1]$ is acting on a particle along the $x$-axis. Determine the work done by the force in moving the particle from $x=0$ to $x=2 a$.
b) A block of mass 6.0 kg slides from rest at a height of 2.0 m down to a horizontal surface where it passes over a 1.5 m rough patch. After crossing this patch it climbs up another incline which is at an angle of $30^{\circ}$ to the ground. The rough patch has a coefficient of kinetic friction $\mu \mathrm{k}$ $=0.25$. What height does the block reach on the incline before it comes to rest?

## Solution:

a)

The basic work relationship $W=F x$ is a special case which applies only to constant force along a straight line. In the more general case of a force which changes with distance the work may be calculated by performing the integral

$$
\begin{gathered}
W=\int_{x_{1}}^{x_{2}} F(x) d x=\int_{0}^{2 a} F(x) d x=\int_{0}^{2 a} A[(x / a)-1] d x \\
W=A \int_{0}^{2 a}\left(\frac{x}{a}-1\right) d x=\left.A\left[\frac{x^{2}}{2 a}-x\right]\right|_{0} ^{2 a}=A\left[\frac{(2 a)^{2}}{2 a}-2 a-0\right]=A[2 a-2 a]=0
\end{gathered}
$$

b)


Given:
$\mathrm{h}_{1}=2.0 \mathrm{~m}$
$\mathrm{m}=6.0 \mathrm{~kg}$
$\mathrm{d}=1.5 \mathrm{~m}$
$\mu_{\mathrm{k}}=0.25$
$\mathrm{h}_{1}$ - ?

Since the problem involves a change of height and speed, we make use of the Generalized Work-Energy Theorem. Since the block's initial and final speeds are zero, we have

$$
\begin{equation*}
\mathrm{W}_{\mathrm{NC}}=\Delta \mathrm{E}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=\mathrm{mgh}_{2}-\mathrm{mgh}_{1} \tag{1}
\end{equation*}
$$



The nonconservative force in this problem is friction. To find the work done by friction, we need to know the friction. To find friction, a force, we draw a Free-Body Diagram at the rough surface and use Newton's Second Law.

Along $x$-axis: $\Sigma F_{x}=m a_{x},-f_{k}=-m a$
Along $y$-axis: $\Sigma F_{y}=m a_{y}, N-m g=0$
The second equation gives $N=m g$ and we know $f_{k}=\mu_{k} N$, so $f_{k}=\mu_{k} m g$. Therefore, the work done by friction is $W_{\text {friction }}=-f_{k} d=-\mu_{k} m g d$. Putting this into equation (1) yields $-\mu_{\mathrm{k}} \mathrm{mgd}=\mathrm{mgh}_{2}-\mathrm{mgh}_{1}$.

Solving for $h_{2}$, we find

$$
h_{2}=h_{1}-\mu_{k} d=2.0-0.25 \cdot 1.5=1.625 \mathrm{~m} .
$$

Answer. a) work = 0,
b) $\mathrm{h}=1.625 \mathrm{~m}$.

