Answer on Question \#39572, Physics, Other

Question:

A string fixed at both ends is 8.40 m long and has a mass of 0.120 kg .lt is subjected to a tension of 96.0 N and set oscillating.(a) What is the speed of the waves on the string? (b)What is the longest possible wavelength for a standing wave? (c) Give the frequency of that wave.

Answer:

a) The speed of the waves on the string is given by:

$$
v=\sqrt{\frac{T}{m / L}}=\sqrt{\frac{96}{0.12 / 8.4}}=82.0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

where T is tension, m is mass, L is length.
b) The fundamental vibrational mode of a stretched string is such that the wavelength is twice the length of the string:

$$
\lambda=2 L=2 * 8.4=16.8 \mathrm{~m}
$$

c) From a) and b) frequency equals:

$$
f=\frac{v}{\lambda}=4.88 \mathrm{~Hz}
$$

