Answer on Question \#39568, Physics, Mechanics |
 Kinematics | Dynamics

Question:

A 125 cm length of string has mass 2.00 g and tension 7.00 N . (a) What is the wave speed for this string? (b) What is the lowest resonant frequency of this string?

Answer:

a) The speed of the waves on the string is given by:

$$
v=\sqrt{\frac{T}{m / L}}=\sqrt{\frac{7 N}{0.002 \mathrm{~kg} / 1.25 \mathrm{~m}}}=66.1 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

where T is tension, m is mass, L is length.
b) The lowest resonance frequency is known as the fundamental frequency for the string. The fundamental vibrational mode of a stretched string is such that the wavelength is twice the length of the string:

$$
\lambda=2 L
$$

Therefore the lowest resonant frequency equals:

$$
f=\frac{v}{\lambda}=\frac{\sqrt{\frac{T}{m / L}}}{2 L}=26.5 \mathrm{~Hz}
$$

