Answer on Question \#39548, Physics, Other

Question:

An equiconvex lens of radius of curvature is cut in two equal parts by vertical plane so it becomes plano convex. if " f " is the focal length of equi convex lens then what will be the focal length of plano convex lens?

Answer:

Focal length equals:

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

where n is the refractive index of the lens medium, R_{1} and R_{2} are radii of curvature

Equiconvex lens have the same radius of curvature, or $R_{1}=-R_{2}$ ("-" because both surfaces are convex), therefore:

$$
\frac{1}{f}=\frac{2(n-1)}{R}
$$

For plano convex lens focal length equals:

$$
\frac{1}{f^{\prime}}=(n-1) \frac{1}{R}
$$

Therefore:

$$
f^{\prime}=2 f
$$

Answer: $2 f$

