Answer on Question\#39469 - Physics - Other

Find the satellite's orbital period.

Solution:

Consider a satellite with mass m orbiting a central body with a mass of mass M. The central body could be a planet, the sun or some other large mass capable of causing sufficient acceleration on a less massive nearby object. If the satellite moves in circular motion, then the net centripetal force acting upon this orbiting satellite is given by the relationship

$$
\begin{equation*}
\mathrm{F}_{\text {centr }}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \tag{1}
\end{equation*}
$$

This net centripetal force is the result of the gravitational force that attracts the satellite towards the central body and can be represented as

$$
\begin{gather*}
\mathrm{F}_{\text {grav }}=\mathrm{G} \frac{\mathrm{~m} \cdot \mathrm{M}}{\mathrm{r}^{2}} \tag{2}\\
(1)=(2) \\
\frac{m v^{2}}{\mathrm{r}}=\mathrm{G} \frac{\mathrm{~m} \cdot \mathrm{M}}{\mathrm{r}^{2}} \\
\mathrm{mv}^{2} \mathrm{r}=\mathrm{GmM} \\
\mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}
\end{gather*}
$$

Now we can find the orbital period:

$$
\mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{v}}=\frac{2 \pi \mathrm{r}}{\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}}=2 \pi \sqrt{\frac{\mathrm{r}^{3}}{\mathrm{GM}^{\prime}}}
$$

where r is the distance from the center of the Earth (Earth's radius + altitude), G is the gravitational constant, and M is the mass of the Earth.
Answer: orbital period $T=2 \pi \sqrt{\frac{\mathrm{r}^{3}}{\mathrm{GM}}}$.

