# Answer on Question \#39465, Physics, Mechanics | Kinematics | Dynamics 

## Question:

2 cubes (side 1 meter) one of relative density 0.6 , the other 1.15 are connected by weightless wire and placed in a water tank. In equilibrium, the height of part of lighter cube above water is?

## Answer:

Newton's first law of motion:

$$
m_{1} g+m_{2} g=F_{b 1}+F_{b 2}
$$

where $F_{b 1}+F_{b 2}$ is total buoyant force

$$
m=\rho V=\rho a^{3}
$$

buoyant force equals (assuming Archimedes' principle):

$$
F_{1 b}=\rho_{w} g V=1 \cdot g a^{2}(a-x)
$$

where $x$ is the height of part of lighter cube above water

$$
F_{1 b}=\rho_{w} g V=1 \cdot g a^{3},
$$

therefore

$$
\begin{gathered}
\rho_{1} a^{3} g+\rho_{2} a^{3} g=g a^{2}(a-x)+g a^{3} \\
x=\left(2-\rho_{1}-\rho_{2}\right) a=(2-0.6-1.15) \cdot 1=0.25 m
\end{gathered}
$$

Answer: 0.25 m

