Show that 90 J of work is needed to increase the speed of a $20-\mathrm{kg}$ cart by $3 \mathrm{~m} / \mathrm{s}$.

Solution:

In order to accomplish work on an object there must be a force exerted on the object and it must move in the direction of the force.

Work = Force x distance moved in direction of force

$$
W=F \cdot d
$$

Newton's Second Law

$$
F=m a
$$

Kinematics equation

$$
2 a d=v^{2}-v_{0}^{2}
$$

where a is acceleration, d is distance, v_{0} is initial velocity and v is final velocity.
Thus,

$$
W=F \cdot d=\operatorname{mad}=\frac{m}{2}\left(v^{2}-v_{0}^{2}\right)
$$

When $v_{0}=0, v-v_{0}=\Delta v=3 \mathrm{~m} / \mathrm{s}$

$$
v^{2}-v_{0}^{2}=\left(v+v_{0}\right)\left(v-v_{0}\right)=\Delta v \cdot \Delta v=(\Delta v)^{2}
$$

Thus,

$$
W=\frac{m}{2}\left(v^{2}-v_{0}^{2}\right)=\frac{m(\Delta v)^{2}}{2}=\frac{20 \cdot(3)^{2}}{2}=90 \mathrm{~J}
$$

