Answer on Question \#39385, Physics, Other

Question:

1.A harmonic wave on a rope is described by the expression
$y(x, t)=(4.3 \mathrm{~mm}) \sin [(2 \mathrm{pi} / 0.82 \mathrm{~m})(x+(12 \mathrm{~m} / \mathrm{s}) \mathrm{t})]$
What are the wave's wavelength, period, wave number, frequency, and direction of propagation.
2.For the wave in qus 1 above, determine the displacement and acceleration of the element of the rope located at $x=0.58 \mathrm{~m}$ at the instant $\mathrm{t}=0.41 \mathrm{~s}$.

Answer:

1. Traveling sinusoidal wave is represented mathematically in terms of its velocity v (in the x direction) and wave number k as:

$$
y(x, t)=A \sin (k(x-v t))
$$

In our case equation of a wave is:

$$
y(x, t)=4.3 m m \sin \left[\frac{2 \pi}{0.82 m}\left(x+\left(12 \frac{m}{s}\right) t\right)\right]
$$

sign " + " means wave moving to left (opposite axis direction)
Therefore, wave number k equals:

$$
k=\frac{2 \pi}{0.82 m}
$$

Wavelength λ equals:

$$
\lambda=\frac{2 \pi}{k}=0.82 \mathrm{~m}
$$

Period equals:

$$
T=\frac{0.82 \mathrm{~m}}{12 \frac{\mathrm{~m}}{\mathrm{~s}}}=0.068 \mathrm{~s}
$$

Frequency equals:

$$
f=\frac{1}{T}=\frac{12 \frac{\mathrm{~m}}{\mathrm{~s}}}{0.82 \mathrm{~m}}=14.63 \frac{1}{\mathrm{~s}}
$$

2. Displacement at $x=0.58 \mathrm{~m}$ and $\mathrm{t}=0.41 \mathrm{~s}$ equals:

$$
y(x, t)=4.3 \mathrm{~mm} \sin \left[\frac{2 \pi}{0.82 \mathrm{~m}}\left(0.58 \mathrm{~m}+\left(12 \frac{\mathrm{~m}}{\mathrm{~s}}\right) 0.41 \mathrm{~s}\right)\right]=-4.15 \mathrm{~mm}
$$

Acceleration equals:

$$
a=\frac{d^{2}}{d t^{2}}(y(t))=-4.3 m m\left(\frac{2 \pi * 12 \frac{m}{s}}{0.82 m}\right)^{2} \sin \left[\frac{2 \pi}{0.82 m}\left(x+\left(12 \frac{m}{s}\right) t\right)\right]
$$

Acceleration at $\mathrm{x}=0.58 \mathrm{~m}$ and $\mathrm{t}=0.41 \mathrm{~s}$ equals:

$$
a=382 \frac{\mathrm{~mm}}{\mathrm{~s}^{2}}
$$

