Answer on Question \#39382, Physics, Other

Question:

The displacement of a particle executing SHM is given by
$x(t)=6 \sin 5(p i) t+8 \cos 5(p i) t$
where x is in cm and t is in seconds. Calculate the amplitude, time period and initial phase of the SHM. Also, obtain the expression for the velocity of the particle.

Answer:

$$
\begin{gathered}
x(t)=6 \sin 5 \pi t+8 \cos 5 \pi t \\
x(t)=10\left(\frac{1}{10} 6 \sin 5 \pi t+\frac{1}{10} 8 \cos 5 \pi t\right)=10\left(\frac{3}{5} \sin 5 \pi t+\frac{4}{5} \cos 5 \pi t\right) \\
\frac{3}{5}=\cos \varphi \text { and } \frac{4}{5}=\sin \varphi
\end{gathered}
$$

where $\varphi=\arctan \frac{4}{3}$
Therefore:

$$
x(t)=10(\cos \varphi \sin 5 \pi t+\sin \varphi \cos 5 \pi t)=10 \sin (5 \pi t+\varphi)
$$

Therefore amplitude equals:

$$
A=10 \mathrm{~cm}
$$

and initial phase equals:

$$
\varphi=\arctan \frac{4}{3} \cong 53.13^{\circ}
$$

time period equals:

$$
T=\frac{2 \pi}{5 \pi}=0.4 \mathrm{~s}
$$

velocity of the particle equals:

$$
v=\frac{d x}{d t}=\frac{d}{d t}(10 \sin (5 \pi t+\varphi))=50 \pi \cos (5 \pi t+\varphi)
$$

