Answer on Question\#39363, Physics, Optics

In a medium of refractive index 1.6 and having a convex surface has a point object in it at a distance of 12 cm from the pole. The radius of curvature is 6 cm . Locate the image as seen from air?

Solution:

In this figure:

- \quad C is the center of curvature of the spherical surface
- R is the radius of curvature
- is the position of the Object
- I is the position of the Image
- S_{o} is the distance of the object from the surface along the optical axis
- S_{i} is the distance from the surface to the Image

For light rays going from medium $1\left(n_{1}\right)$ to medium $2\left(n_{2}\right)$:

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

Given: $\mathrm{n}_{1}=1, \mathrm{n}_{2}=1.6, \mathrm{R}=6 \mathrm{~cm}, \mathrm{~s}_{\mathrm{i}}=12 \mathrm{~cm}$.

$$
\begin{gathered}
\frac{n_{2}}{s_{i}}+\frac{n_{1}}{s_{i}^{\prime}}=\frac{n_{2}-n_{1}}{R} \\
\frac{1.6}{12}+\frac{1}{s_{i}^{\prime}}=\frac{0.6}{6} \\
\frac{1}{s_{o}}=\frac{0.6}{6}-\frac{1.6}{12}=-\frac{0.4}{12} \\
s_{o}=-30 \mathrm{~cm}
\end{gathered}
$$

Hence the object appears 30 cm deep from the curved side.
Answer. 30 cm

