Answer on Question\#39296, Physics, Mechanics | Kinematics | Dynamics

A small block starts sliding down an inclined plane forming an angle with the horizontal the coefficient of friction depends on the distance covered from rest along as ax where a=constant. find distance covered by the block down the plane, till it stops sliding, and its max velocity during this journey.

Solution:

To calculate the forces on an object placed on an inclined plane, consider the three forces acting on it.

- The normal force (N) exerted on the body by the plane due to the attraction of gravity i.e. $N=m g \cos \theta$
- the force due to gravity (mg, acting vertically downwards) $F=m g \sin \theta$
- the frictional force (f) acting parallel to the plane. $f=\mu N=\mu \mathrm{mg} \cos \theta$, where μ is the coefficient of friction $\mu=a_{k} \times$ ($a_{k}=$ constant).
Equation of motion:

$$
m a=m g \sin \theta-f=m g \sin \theta-\mu m g \cos \theta=m g\left(\sin \theta-a_{k} x \cos \theta\right)
$$

Acceleration

$$
\begin{gathered}
a=g\left(\sin \theta-a_{k} x \cos \theta\right) \\
a=\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x} \\
v \frac{d v}{d x}=g\left(\sin \theta-a_{k} x \cos \theta\right) \\
v d v=g\left(\sin \theta-a_{k} x \cos \theta\right) d x \\
v \\
\int_{0}^{v} v d v=\int_{0}^{x} g\left(\sin \theta-a_{k} x \cos \theta\right) d x \\
\frac{v^{2}}{2}=g x \sin \theta-a_{k} g \frac{x^{2}}{2} \cos \theta
\end{gathered}
$$

Block stops when velocity $v=0$ and distance $x=d$ covered by the block down the plane

$$
\begin{gathered}
g d \sin \theta-a_{k} g \frac{d^{2}}{2} \cos \theta=0 \\
d=\frac{2 g \sin \theta}{a_{k} g \cos \theta}=\frac{2}{a_{k}} \tan \theta
\end{gathered}
$$

The max velocity we will find by taking the derivative of function and equal it to zero

$$
\begin{gathered}
\frac{v^{2}}{2}=f(x)=g x \sin \theta-a_{k} g \frac{x^{2}}{2} \cos \theta \\
f^{\prime}(x)=\frac{d}{d x}\left(g x \sin \theta-a_{k} g \frac{x^{2}}{2} \cos \theta\right)=g\left(\sin \theta-a_{k} x \cos \theta\right)=0
\end{gathered}
$$

The max velocity will be at point

$$
\begin{gathered}
x=\frac{\sin \theta}{a_{k} \cos \theta}=\frac{\tan \theta}{a_{k}} \\
\frac{v_{\max }^{2}}{2}=f\left(\frac{\tan \theta}{a_{k}}\right)=g \frac{\tan \theta}{a_{k}} \sin \theta-a_{k} g \frac{\left(\frac{\tan \theta}{a_{k}}\right)^{2}}{2} \cos \theta=\frac{g \sin \theta \tan \theta}{2 a_{k}}
\end{gathered}
$$

Thus,

$$
v_{\max }=\sqrt{\frac{g \sin \theta \tan \theta}{a_{k}}}
$$

Answer. 1. $d=\frac{2}{a} \tan \theta ; 2 . v_{\max }=\sqrt{\frac{g \sin \theta \tan \theta}{a}}$.

