Answer on Question \#39278, Physics, Mechanics | Kinematics | Dynamics

Establish the differential equation for damped harmonic oscillator and obtain its solution. Show that the damped oscillator will exhibit non-oscillatory behavior if the damping is heavy.

Solution:

Newton's Law for a spring system with linear damping reads

$$
-k x-b v=m a
$$

for a block of mass m attached to a spring of constant k with damping coefficient b.

Figure: Plots of displacement vs time for the mass-spring system: (a) underdamped - mass in air; (b) overdamped - mass in thick oil; (c) critically damped - mass in water

Using the definitions of velocity and acceleration we can write this as the differential equation

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+\frac{b}{m} \frac{d x}{d t}+\frac{k}{m} x=0 \\
& \left\{\frac{d^{2}}{d t^{2}}+\frac{b}{m} \frac{d}{d t}+\frac{k}{m}\right\} x=0
\end{aligned}
$$

We can think of the expression on the left hand side as a polynomial in the variable d / dt. We proceed by making the substitution $\mathrm{y}=\mathrm{d} / \mathrm{dt}$ and then completing the square

$$
y^{2}+\frac{b}{m} y+\frac{k}{m}=y^{2}+2\left(\frac{b}{2 m}\right)+\left(\frac{b}{2 m}\right)^{2}-\left(\frac{b}{2 m}\right)^{2}+\frac{k}{m}=\left(y+\frac{b}{2 m}\right)^{2}+\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2}
$$

So now our differential equation reads

$$
\left\{\left(\frac{d}{d t}+\frac{b}{2 m}\right)^{2}+\omega^{2}\right\} x=0
$$

where we have set

$$
\omega^{2}=\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2} .
$$

We are assuming here that $\omega^{2}>0$.
Now we just move one term to the other side to get

$$
\left(\frac{d}{d t}+\frac{b}{2 m}\right)^{2} x=-\omega^{2} x
$$

and we take the square root of this expression to get

$$
\left(\frac{d}{d t}+\frac{b}{2 m}\right) x= \pm i \omega x
$$

Note that we now have two first order equations to solve (one for each sign).
We seek solutions to the equations

$$
\frac{d x}{d t}=\left(-\frac{b}{2 m} \pm i \omega\right) x
$$

which have the obvious solutions
$x=\exp \left(-\frac{b}{2 m} \pm i \omega\right) t=\exp \left(-\frac{b}{2 m} t\right) \exp (\pm i \omega t)=\exp \left(-\frac{b}{2 m} t\right)(\cos (\omega t) \pm i \sin (\omega t))$
Thus our two solutions are (using Euler's formula)

$$
\begin{aligned}
& x_{1}=A_{1} \exp \left(-\frac{b}{2 m} t\right)(\cos (\omega t)+i \sin (\omega t)) \\
& x_{2}=A_{2} \exp \left(-\frac{b}{2 m} t\right)(\cos (\omega t)-i \sin (\omega t))
\end{aligned}
$$

and our total solution ($x 1+x 2$) can be written

$$
x=\exp \left(-\frac{b}{2 m} t\right)\left(\left(A_{1}+A_{2}\right) \cos (\omega t)+i\left(A_{1}-A_{2}\right) \sin (\omega t)\right)
$$

Now, we need to choose A1 and A2 so that we get a real-valued solution, that is A1 + A2 is real, and A1-A2 is imaginary.

This condition has the effect of taking us from four unknown quantities (the real and imaginary part of each A) to just two, which is the appropriate number for a second order equation. Our solution is now

$$
x=\exp \left(-\frac{b}{2 m} t\right)(B \cos (\omega t)+C \sin (\omega t))
$$

which is the general form of the solution representing damped oscillations, and we have

$$
\omega=\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2}} .
$$

2) The overdamped case (damping is heavy) occurs when $\omega_{0}<b / 2 m$. Now the system doesn't oscillate at all; the motion simply dies away. This is characterised by a solution which decays exponentially.

Then we rewrite our equation as

$$
\left\{\left(\frac{d}{d t}+\frac{b}{2 m}\right)^{2}-\omega^{2}\right\} x=0
$$

where we now have set

$$
\omega^{2}=\left(\frac{b}{2 m}\right)^{2}-\frac{k}{m}>0
$$

Then upon square rooting our equation we obtain

$$
\left(\frac{d}{d t}+\frac{b}{2 m}\right) x= \pm \omega x
$$

which is a real equation. The differential equation to solve is now

$$
\frac{d x}{d t}=\left(-\frac{b}{2 m} \pm \omega\right) x
$$

which has the solutions

$$
\begin{aligned}
& x_{1}=A_{1} \exp \left(-\frac{b}{2 m}+\omega\right) t \\
& x_{2}=A_{2} \exp \left(-\frac{b}{2 m}-\omega\right) t
\end{aligned}
$$

both representing a damped motion without oscillations.

