
Answer on Question #39278, Physics, Mechanics | Kinematics | Dynamics 

 

Establish the differential equation for damped harmonic oscillator and obtain its solution. 

Show that the damped oscillator will exhibit non-oscillatory behavior if the damping is heavy. 

 

Solution: 

Newton’s Law for a spring system with linear damping reads 

              

for a block of mass m attached to a spring of constant k with damping coefficient b.  

 

Figure: Plots of displacement vs time for the mass-spring system: (a) underdamped – mass in air; 

(b) overdamped – mass in thick oil; (c) critically damped – mass in water 

 

Using the definitions of velocity and acceleration we can write this as the differential equation 
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We can think of the expression on the left hand side as a polynomial in the variable d/dt. We 

proceed by making the substitution y = d/dt and then completing the square 
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So now our differential equation reads 
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   }      

where we have set 
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We are assuming here that ω2 > 0. 

Now we just move one term to the other side to get 
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and we take the square root of this expression to get 
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Note that we now have two first order equations to solve (one for each sign). 

We seek solutions to the equations 
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which have the obvious solutions 
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Thus our two solutions are (using Euler’s formula) 
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and our total solution (x1 + x2) can be written 
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Now, we need to choose A1 and A2 so that we get a real-valued solution, that is A1 + A2 is 

real, and A1 − A2 is imaginary. 

This condition has the effect of taking us from four unknown quantities (the real and 

imaginary part of each A) to just two, which is the appropriate number for a second order 

equation. Our solution is now 
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which is the general form of the solution representing damped oscillations, and we have 
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2) The overdamped case (damping is heavy) occurs when ω0 < b/2m. Now the system doesn't 

oscillate at all; the motion simply dies away. This is characterised by a solution which decays 

exponentially. 

Then we rewrite our equation as 
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   }      

where we now have set 
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Then upon square rooting our equation we obtain 
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)       
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which is a real equation. The differential equation to solve is now  
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which has the solutions  
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both representing a damped motion without oscillations. 
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