

Answer on Question 39277, Physics, Other

The equation of motion of a forced weakly damped oscillator is $\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{f}{m} \cos \gamma t$, where

\ddot{x} is the acceleration, $2\lambda \dot{x}$ takes damping into account, and $\frac{f}{m} \cos \gamma t$ is the external periodic force.

Let us first obtain the solution of homogenous equation. $\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = 0$. Let us look for a solution in form $x = e^{rt}$. Plugging this into equation, obtain $r^2 + 2\lambda r + \omega_0^2 = 0$. General solution is hence $x = a_1 e^{r_1 t} + a_2 e^{r_2 t}$, where $r_{1,2} = -\lambda \pm \sqrt{\lambda^2 - \omega_0^2}$. If $\lambda < \omega_0$, then we have two complex solutions, which are complex conjugate one to each other. Thus, solution might be written as $x = a e^{-\lambda t} \cos(\omega t + \alpha)$, where $\omega = \sqrt{(\omega_0^2 - \lambda^2)}$.

Knowing the homogenous solution, one has to find the particular solution of

$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{f}{m} \cos \gamma t$. Seek for it in form $x_p(t) = A \cos \gamma t + B \sin \gamma t$. Plugging in into

equation, obtain $A = \frac{-f}{m} \frac{(\gamma^2 - \omega_0^2)}{[(\omega_0^2 - \gamma^2) + 4\lambda^2 \gamma^2]}$ and $B = \frac{f}{m} \frac{2\gamma\lambda}{[(\omega_0^2 - \gamma^2) + 4\lambda^2 \gamma^2]}$.

Particular solution $x_p(t) = A \cos \gamma t + B \sin \gamma t$ might be then rewritten as

$\sqrt{A^2 + B^2} (\cos \delta \cos \gamma t - \sin \delta \sin \gamma t)$, where $\cos \delta = \frac{A}{\sqrt{A^2 + B^2}}$, $\sin \delta = \frac{-B}{\sqrt{A^2 + B^2}}$, thus

$$\tan \delta = \frac{-B}{A} = \frac{2\gamma\lambda}{\gamma^2 - \omega_0^2}.$$

Hence, $x_p(t) = C \cos(\gamma t + \delta)$, where $C = \frac{f}{m \sqrt{(\omega_0^2 - \gamma^2)^2 + 4\lambda^2 \gamma^2}}$.

Finally, solution of equation is $x = a e^{-\lambda t} \cos(\omega t + \alpha) + C \cos(\gamma t + \delta)$.