A student conducted an experiment to measure the acceleration due to gravity,g, of a simple pendulum.

The data obtained are tabulated:

LENGTH O THREAD,L/M 0.35 0.65 1.00 1.45 1.95

TIME FOR 20 OSCILLATIONS,T/S 24.1 32.4 40.1 47.5 56.3

Given that the relation between the periodic time,T,=2 pi square root of L/G, find the value of g using a graphical approach.

Solution:

A simple pendulum is one which can be considered to be a point mass suspended from a string or rod of negligible mass. For small amplitudes, the period of such a pendulum can be approximated by:

$$T = 2\pi \sqrt{\frac{L}{g}}$$

For g we have:

$$g = \frac{4\pi^2 L}{T^2}$$

The data obtained are tabulated:

 LENGTH O THREAD,L/M
 0.35
 0.65
 1.00
 1.45
 1.95

 TIME FOR 20 OSCILLATIONS,T/S
 24.1
 32.4
 40.1
 47.5
 56.3

Period of pendulum, the time of one oscillation is TIME FOR 20 OSCILLATIONS

LENGTH O THREAD, L, m	0.35	0.65	1.00	1.45	1.95
Period of pendulum, T, s	1.205	1.62	2.005	2.375	2.815
Square of the period, T ²	1,45203	2,6244	4,02002	5,64063	7,92422

We draw a graph of L with respect to T². We get a straight line passing through origin. The slope of this line is: $g/(4\pi^2)$.

For example, the slope of line is $tan(\alpha)=2/8=1/4$.

Thus,

$$\frac{g}{4\pi^2} \approx \frac{1}{4}$$
$$g \approx \pi^2 = 3.14^2 = 9.86$$

Answer. Finding graphically $g=9.86 \text{ m/s}^2$.