Answer on Question\#39212 - Physics - Other

A 33 kg gun is standing on a frictionless surface. The gun fires a 55.7 g bullet with a muzzle velocity of $318 \mathrm{~m} / \mathrm{s}$. The positive direction is that of the bullet. Calculate the momentum of the gun immediately after the gun was fired

Solution:

This is a conservation of momentum problem.

Before gun fires, the total momentum in the system is 0 (gun is standing). After the gun was fired, total momentum of the system is sum of momentum of the gun and momentum of the bullet (along X-axis):

$$
\begin{gathered}
\mathrm{x}: 0=\mathrm{p}_{\text {gun }}+\mathrm{p}_{\text {bullet }} \Rightarrow \\
\mathrm{p}_{\text {gun }}=-\mathrm{p}_{\text {bullet }}=-\mathrm{mv}=-55.7 \times 10^{-3} \mathrm{~kg} \cdot 318 \frac{\mathrm{~m}}{\mathrm{~s}}=-17.7 \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: momentum of the gun immediately after the gun was fired is equal to $-17.7 \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

