Answer on Question \#39202, Physics, Other
A motorist drives south at $28.0 \mathrm{~m} / \mathrm{s}$ for 3.00 min , then turns west and travels at $25.0 \mathrm{~m} / \mathrm{s}$ for 2.40 min , and finally travels northwest at $30.0 \mathrm{~m} / \mathrm{s}$ for 1.00 min . For this 6.40 min trip, find the following values. Let the positive x axis point east.
(a) total vector displacement \qquad M magnitude. \qquad deg south of west
(b) average speed \qquad m / s
(c) average velocity \qquad m / s (magnitude) \qquad ${ }^{\circ}$ south of west

Solution:

(a) Let construct three vectors and find their sum:

Distance=velocity x time

$$
\begin{gathered}
\overrightarrow{\mathrm{d} 1}=-28 * 3 * 60 \vec{\jmath}=-5040 \vec{\jmath} \\
\overrightarrow{\mathrm{~d} 2}=-25 * 2.4 * 60 \vec{\imath}=-3600 \vec{\imath} \\
\overrightarrow{\mathrm{~d} 3}=-30 \cos 45^{\circ} * 60 \vec{\imath}+30 \sin 45^{\circ} * 60 \vec{\jmath}=-1273 \vec{\imath}+1273 \vec{\jmath}
\end{gathered}
$$

Total vector displacement:

$$
\overrightarrow{\mathrm{d}}=\overrightarrow{\mathrm{d} 1}+\overrightarrow{\mathrm{d} 2}+\overrightarrow{\mathrm{d} 3}=-5040 \vec{\jmath}-3600 \vec{\imath}-1273 \vec{\imath}+1273 \vec{\jmath}=-4873 \vec{\imath}-3767 \vec{\jmath}
$$

The magnitude of the displacement is

$$
\mathrm{d}=\sqrt{(x)^{2}+(y)^{2}}=\sqrt{(4873)^{2}+(3767)^{2}}=6160 \mathrm{~m}
$$

The direction of vector d :

$$
\begin{gathered}
\tan \theta=\frac{y}{x}=\frac{3767}{4873} \\
\theta=\arctan (0.773)=37.7^{\circ}
\end{gathered}
$$

(b) The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval.

$$
\bar{v}=\frac{d 1+d 2+d 3}{t 1+t 2+t 3}=\frac{5040+3600+1800}{(3+2.4+1) * 60}=27.1875 \approx 27.19 \mathrm{~m} / \mathrm{s}
$$

(c) The magnitude of an average velocity

$$
v=\frac{d}{t 1+t 2+t 3}=\frac{6385.8}{(3+2.4+1) * 60} \approx 16.63 \mathrm{~m} / \mathrm{s}
$$

The direction of an average velocity 40.26° south of west.

Answer.

(a) total vector displacement $=-4873 \overrightarrow{\mathrm{i}}-3767 \overrightarrow{\mathrm{j}}$; magnitude $6160 \mathrm{~m} ; 37.7^{\circ}$ south of west
(b) average speed $27.19 \mathrm{~m} / \mathrm{s}$
(c) average velocity $16.63 \mathrm{~m} / \mathrm{s}$ (magnitude) 40.26° south of west

