Answer on Question\#39127 - Physics - Mechanics | Kinematics | Dynamics

An object of mass 3 kg is moving on a rough surface with a velocity of $16 \mathrm{~m} / \mathrm{s}$. It covers a distance of a of 20 m before coming to rest. find the the opposing force.

Solution:

$\mathrm{m}=3 \mathrm{~kg}$ is mass of the object;
$\mathrm{V}_{0}=16 \frac{\mathrm{~m}}{\mathrm{~s}}$ is initial speed of the object;
$S=20 \mathrm{~m}$ is covered distance;
Rate equation for the object:
$0=V_{0}$ - at
$\mathrm{t}=\frac{\mathrm{V}_{0}}{\mathrm{a}}$
Equations of motion for the object:
$S=V_{0} t-\frac{a t^{2}}{2}$
(1) in (2)
$S=\frac{V_{0}^{2}}{a}-\frac{V_{0}^{2}}{2 a}=\frac{V_{0}^{2}}{2 a}$
$2 \mathrm{aS}=\mathrm{V}_{0}^{2}$
$a=\frac{V_{0}^{2}}{2 S}$
Second Newton's law along the X-axis for the object (F - opposing force):
$\mathrm{F}=\mathrm{ma}$
(4)
(3)in(4):
$\mathrm{F}=\frac{\mathrm{mV}}{0} 2 \mathrm{~S}=\frac{3 \mathrm{~kg} \cdot\left(16 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 20 \mathrm{~m}}=58 \mathrm{~N}$
Answer: opposing force is equal to 58 N .

