

Answer on Question #39104, Physics, Mechanics

Question:

Two air track gliders experience an elastic head-on collision. A 0.28 kg glider is heading at 2.13 m/s when it collides with a 2.58 kg glider which is moving at -3.58 m/s.

What is the velocity of the 0.28 kg object after the collision?

What is the velocity of the 2.58 kg object after the collision?

Answer:

The law of conservation of momentum:

$$m_1 v_1 + m_2 v_2 = m_1 v'_1 + m_2 v'_2$$

$$m_1(v_1 - v'_1) = m_2(v'_2 - v_2)$$

where $m_1 = 0.28 \text{ kg}$, $m_2 = 2.58$, v_1, v_2 are speeds before collision, v'_1, v'_2 - after.

The law of conservation of energy:

$$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 v'_1^2}{2} + \frac{m_2 v'_2^2}{2}$$

$$\frac{m_1 v_1^2}{2} - \frac{m_1 v'_1^2}{2} = \frac{m_2 v'_2^2}{2} - \frac{m_2 v_2^2}{2}$$

$$m_1(v_1 - v'_1)(v_1 + v'_1) = m_2(v'_2 - v_2)(v'_2 + v_2)$$

So, we have system of equations:

$$\begin{cases} m_1(v_1 - v'_1) = m_2(v'_2 - v_2) \\ m_1(v_1 - v'_1)(v_1 + v'_1) = m_2(v'_2 - v_2)(v'_2 + v_2) \end{cases}$$

Or:

$$\begin{cases} m_1(v_1 - v'_1) = m_2(v'_2 - v_2) \\ (v_1 + v'_1) = (v'_2 + v_2) \end{cases}$$

Solving for v'_1 and v'_2 :

$$v'_1 = \frac{2m_2 v_2 + (m_1 - m_2)v_1}{m_1 + m_2} = -8.17 \frac{m}{s}$$

$$v'_2 = \frac{2m_1 v_1 - (m_1 - m_2)v_2}{m_1 + m_2} = -2.46 \frac{m}{s}$$

Answer: $v'_1 = -8.17 \frac{m}{s}$, $v'_2 = -2.46 \frac{m}{s}$