Answer on Question 39102, Physics, Mechanics Elastically colliding means we can use both energy and momentum conservation law here. Speed of sphere before colliding is $v_{s}=\sqrt{2 g h}$ and its energy is $m_{s} g h_{s}=\frac{m_{s} v_{s}^{2}}{2}$. From conservation laws

$$
\begin{aligned}
\frac{m_{s} v_{s}^{2}}{2} & =\frac{m_{1} v_{1}^{2}}{2}+\frac{m_{2} v_{2}^{2}}{2} \\
m_{s} v_{s} & =m_{1} v_{1}+m_{2} v_{2}
\end{aligned}
$$

one can easily find velocity of block after collision

$$
v_{2}=\frac{v_{s}}{m_{2} / m_{1}+1}
$$

From this we can find how high will the block get

$$
h_{2}=\frac{v_{2}^{2}}{2 g}
$$

Knowing the height, we will find how far does the block slide

$$
l=\frac{h_{2}}{\sin 30^{\circ}}
$$

Gathering everything together

$$
l=\frac{\frac{v_{2}^{2}}{2 g}}{\sin 30^{\circ}}=\frac{\left(\frac{v_{s}}{m_{2} / m_{1}+1}\right)^{2}}{2 g \sin 30^{\circ}}=\frac{\left(\frac{\sqrt{2 g h}}{m_{2} / m_{1}+1}\right)^{2}}{2 g \sin 30^{\circ}} \approx 0.069 \mathrm{~m}=6.9 \mathrm{~cm}
$$

