Answer on Question \#39082, Physics, Optics

Show that all Fresnel half-period zones have the same area.

Solution.

Let the light source S extends monochromatic spherical wave, P - the point of observation. Through the point O passes spherical wave surface. It is symmetric with respect to the line $S P$.

To determine the resultant effect at P, Fresnel subdivided the wavefront into a number of circular zones I, II, III etc. Let $P O=b$. The radii of zones equal $b+\frac{\lambda}{2}, b+\frac{2 \lambda}{2}, b+\frac{3 \lambda}{2} \ldots$ etc. The area enclosed between O and $\mathrm{O}_{1}, \mathrm{O}_{1}$ and $\mathrm{O}_{2}, \mathrm{O}_{2}$ and O_{3} etc. are known as half period zones. Each zone differs from its neighbour by a phase difference of π or a path difference of $\lambda / 2$. The area enclosed by the first circle of radius OO_{1} is called the first half period zone. The area enclosed by the annular strip $\mathrm{O}_{1} \mathrm{O}_{2}$ is known as second half period zone and so on. Thus, the annular area between ($\mathrm{n}-1$)th circle and nth is the nth hall period zone.

The area of the nth zone:

$$
\begin{aligned}
& S_{n}=\pi O O_{n}^{2}-O O_{n-1}^{2}=\pi\left[\left(P O_{n}^{2}-P O^{2}\right)-\left(P O_{n-1}^{2}-P O^{2}\right)\right]=\pi\left[P O_{n}^{2}-P O_{n-1}^{2}\right]= \\
& =\pi\left[\left(b+\frac{n \lambda}{2}\right)^{2}-\left(b+\frac{(n-1) \lambda}{2}\right)^{2}\right]= \\
& =\pi\left[b^{2}+\frac{n^{2} \lambda^{2}}{4}+b n \lambda-b^{2}-\frac{(n-1)^{2} \lambda^{2}}{4}-b \lambda(n-1)\right]= \\
& =\pi\left[b \lambda+\frac{\lambda^{2}}{4}\left(n^{2}-n^{2}-1+2 n\right)\right]=\pi\left[b \lambda+\frac{\lambda^{2}}{4}(2 n-1)\right]
\end{aligned}
$$

$b \gg \lambda$ so λ^{2} term is negligible.
Thus,

$$
S_{n} \approx \pi b \lambda
$$

The area of each half period zone ($\pi b \lambda$) is approximately same and independent of the order of zone.

