Answer on Question \#38974, Physics, Optics

A travelling microscope is focused on to a scratch on the bottom of a beaker. Water of refractive index $4 / 3$ is poured in it. Then the microscope is to be lifted through 2 cm focus it again. Find the depth of water in the beaker.
(1) 4 cm
(2) (2) 8 cm
(3) (3) $8 / 7 \mathrm{~cm}$
(4) $(4) 8 / 3 \mathrm{~cm}$

Solution:

Apparent depth is depth that a transparent material such as water appears to have when viewed from above. This is less than its real depth because of the refraction that takes place when light passes into a less dense medium.

$$
d_{r e a l}-d_{a p p}=2 \mathrm{~cm}
$$

The ratio of the real depth to the apparent depth of a transparent material is equal to its refractive index.

Refractive index $\mathrm{n}=$ Real depth/Apparent depth.
Thus,

$$
n=\frac{d_{\text {real }}}{d_{\text {app }}}=\frac{4}{3}
$$

We have system of equation

$$
\left\{\begin{array}{c}
d_{r e a l}-d_{a p p}=2 \\
\frac{d_{r e a l}}{d_{a p p}}=\frac{4}{3}
\end{array}\right.
$$

A solution of a system is

$$
\begin{gathered}
d_{\text {app }}=\frac{3}{4} d_{\text {real }} \\
d_{\text {real }}-\frac{3}{4} d_{\text {real }}=2 \\
\frac{1}{4} d_{\text {real }}=2 \\
d_{\text {real }}=8
\end{gathered}
$$

Answer. (2) 8 cm .

