Answer on Question \#38971, Physics, Optics

For the angle of minimum deviation of a prism to be equal to its refracting angle, the prism must be made of a material whose refractive index
(1) Lies between $2^{\wedge} 1 / 2$ and 1
(2) Lies between 2 and $2^{\wedge} 1 / 2$
(3) Is less than 1
(4) Is greater than 2

Solution:

The refractive index n, angle of minimum deviation δ of light through a prism with refracting angle A are related by the following formula:

$$
n=\frac{\sin \left(\frac{A+\delta}{2}\right)}{\sin \left(\frac{A}{2}\right)}
$$

We have $\delta=A$

$$
n=\frac{\sin \left(\frac{A+A}{2}\right)}{\sin \left(\frac{A}{2}\right)}=\frac{\sin \left(2 \frac{A}{2}\right)}{\sin \left(\frac{A}{2}\right)}=\frac{2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right)}{\sin \left(\frac{A}{2}\right)}=2 \cos \left(\frac{A}{2}\right)
$$

When $\delta=\mathrm{A}$, these angles can change in range from 0 to 90 degrees.
$\cos \left(0^{\circ}\right)=1$, then $n=2$.
$\cos \left(\frac{90^{\circ}}{2}\right)=\cos \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}$, then $n=\sqrt{2}$.
Thus n lies between 2 and $\sqrt{2}$.
Answer. (2) Lies between 2 and $2^{\wedge} 1 / 2$.

