Answer on Question 38958, Physics, Optics We will use formula for 2-lens system here. The effective focal length of such system is

$$
\begin{aligned}
\frac{1}{f_{e f f}} & =\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{l}{f_{1} f_{2}} \\
f_{e f f} & =\frac{1}{\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{l}{f_{1} f_{2}}}
\end{aligned}
$$

where f_{1}, f_{2} are focal lengthes of the 1 and lens and l is distance between them. For concave lens f_{2} should be negative.
We need $f_{\text {eff }}$ to be infinity if we want to keep parallel beam parallel. Hence, equation for distance l is

$$
\begin{gathered}
\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{l}{f_{1} f_{2}}=0 \\
l=\left(\frac{1}{f_{1}}+\frac{1}{f_{2}}\right) f_{1} f_{2} \\
l=-\left(\frac{1}{15}-\frac{1}{5}\right) \cdot 15 \cdot 5=10 \mathrm{~cm}
\end{gathered}
$$

Hence, answer is c) 10 cm .

