## Answer on Question\#38957 - Physics - Other

Given the kinematics equation for the motion of an object falling from rest, $\mathrm{x}=.5 \mathrm{~g} * \mathrm{t} 2$ ), what kind of relationship is predicted between x and t ? (select all that apply)

1) $x=k^{*} t$, where $k$ is a constant
2) $x=k * t 2$, where $k$ is a constant.
3) displacement, $x$, is proportional to time, $t$.
4) diplacement, $x$, is proportional to the square of the time, t2.
5) displacement, $x$, has a linear relationship with time, $t$.
6) displacement, $x$, and time, $t$, obey a power law.
7) $x=k^{*} t+b$, where $k$ and $b$ are constants.

## Solution:

Equations of motion for the object:

$$
\begin{aligned}
& \mathrm{x}=\frac{\mathrm{gt}^{2}}{2}=\frac{\mathrm{g}}{2} \cdot \mathrm{t}^{2}=\mathrm{kt}^{2} \\
& \mathrm{~g}=\mathrm{const}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \Rightarrow
\end{aligned}
$$

First: $\mathrm{x}=\mathrm{kt}^{2}$, where k is a constant.
Second: diplacement, $x$, is proportional to the square of the time, $t^{2}$. (Because $x=$ $\mathrm{kt}^{2} \Rightarrow \mathrm{x} \sim \mathrm{t}^{2}$ )

Answer: 2) $x=k^{*} t^{2}$, where $k$ is a constant.
4) diplacement, $x$, is proportional to the square of the time, $t^{2}$.

