1. A body changes its velocity from $5 \mathrm{~m} / \mathrm{sec}$ during an accelerated motion of $1 \mathrm{~m} / \mathrm{sec}$ square magnitude and covers a distance of 12 metres in some time. Find the velocity at the end of this time.
$v_{1}=5 \frac{\mathrm{~m}}{\mathrm{~s}}$
Solution.
$a=1 \frac{m}{s^{2}} \quad$ velocity and its initial and final velocities: $l=\frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2 a}$.
$l=12 \mathrm{~m}$
$v_{2}-?$
One can find the velocity at the end of the motion: $v_{2}=\sqrt{2 a l+v_{1}}$.
Let check the dimension.
$\left[v_{2}\right]=\sqrt{\frac{m}{s^{2}} \cdot m+\left(\frac{m}{s}\right)^{2}}=\frac{m}{s}$.
Let evaluate the quantity.
$v_{2}=\sqrt{2 \cdot 1 \cdot 12+5^{2}}=7\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)$.
Answer: $7 \frac{\mathrm{~m}}{\mathrm{~s}}$.
