Answer on Question \#38912, Physics, Mechanics | Kinematics | Dynamics

The velocity of a boat is $20 \mathrm{~km} / \mathrm{h}$ in a direction 50 degree north of east. The wind velocity is $5 \mathrm{~km} / \mathrm{h}$ from the west. The resultant velocity of the boat can be represented by the side of a triangle in which two velocities are the other side. Determine the resultant velocity of the boat.

Solution:

We introduce the following notations:
$\mathrm{v}_{\mathrm{b}}=20 \mathrm{~km} / \mathrm{h}$ (velocity of a boat),
$v_{w}=5 \mathrm{~km} / \mathrm{h}$ (wind velocity),
$Y=180^{\circ}-50^{\circ}=130^{\circ}$ (angle between the direction from the west and north-east direction).

I give the formula for the Law of Cosines and use it to find the missing side length of a triangle.

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

In our notations the resultant velocity of the boat v_{r} is:

$$
\begin{gathered}
v_{r}^{2}=v_{b}^{2}+v_{w}^{2}-2 v_{b} v_{w} \cos \gamma \\
v_{r}^{2}=20^{2}+5^{2}-2 \cdot 20 \cdot 5 \cdot \cos \left(130^{\circ}\right)=400+25+128.56=553.56 \\
v_{r}=\sqrt{553.56}=23.5 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

Answer: 23.5 km/h.

