Answer on Question 38827, Physics, Optics Maxwells field equations in free space are

$$
\begin{gathered}
\nabla \cdot \mathbf{E}=0 \\
\nabla \times \mathbf{E}=\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
\end{gathered}
$$

To derive wave equation we will take curl of the curl equations and use curl of the curl identity:

$$
\nabla \times(\nabla \times \mathbf{E})=\nabla \cdot(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}
$$

We know that $\nabla \cdot \mathbf{E}$. From the other hand, from equations we see that

$$
\nabla \times(\nabla \times \mathbf{E})=-\nabla \times\left(\frac{\partial \mathbf{B}}{\partial t}\right)=-\frac{\partial(\nabla \times \mathbf{B})}{\partial t}=-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}
$$

All together give us

$$
\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}-\nabla^{2} \mathbf{E}=0
$$

In the very same way we get

$$
\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}-\nabla^{2} \mathbf{B}=0
$$

