Answer on Question\#38822, Programming, C++

The fast train known as the TGV atlantique (TRAIN GRANDE VITESSE) that runs south from paris to le mans in france has a top speed of $310 \mathrm{~km} / \mathrm{h}$. (a)if the train goes around a curve at this speed and the acceleration experienced by the passengers is to be limited to 0.05 g , what is the smallest radius of curvature for the track that can be tolerated? (b) if there is a curve with a $0.94-\mathrm{km}$ radius, to what speed must the train be slowed?

Solution:

a) Centripetal acceleration is part of moving in a circular path. Centripetal acceleration points toward the center of the circular path of the train, but is felt by passengers as a force pushing them to the outer edge of the circular path.
The equation for centripetal acceleration is:
$a_{r}=\frac{v^{2}}{r}$.
Where a_{r} is centripetal acceleration, v is velocity in meters per second, and r is the radius of the circle in meters.
$v=310 \frac{\mathrm{~km}}{\mathrm{~h}}=310 \cdot \frac{1000}{3600}=86.11 \frac{\mathrm{~m}}{\mathrm{~s}}$;
$a=0.05 \mathrm{~g}=0.05 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=0.49 \mathrm{~m} / \mathrm{s}^{2}$.
The smallest radius of curvature for the track:
$r=\frac{v^{2}}{a_{r}}=\frac{86.1^{2}}{0.49}=15129 \mathrm{~m}=15.129 \mathrm{~km} \approx 15.13 \mathrm{~km}$.
b)
$r=0.94 \mathrm{~km}=940 \mathrm{~m}$;
$a=0.05 \mathrm{~g}=0.05 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=0.49 \mathrm{~m} / \mathrm{s}^{2}$.
$v=\sqrt{a_{r} r}=\sqrt{0.49 \cdot 940}=\sqrt{460.6}=21.46 \mathrm{~m} / \mathrm{s}=21.46 \cdot 3.6 \mathrm{~km} / \mathrm{h}=77.26 \mathrm{~km} / \mathrm{h}$.

Answer: a) $r=15.13 \mathrm{~km}$; b) $v=77.26 \mathrm{~km} / \mathrm{h}$.

