Answer on Question \#38795, Physics, Mechanics | Kinematics | Dynamics

Question:

What is the resultant speed of an airplane headed due south at a speed of 500 $\mathrm{km} / \mathrm{hr}$ while being subjected to a $100 \mathrm{~km} / \mathrm{hr}$ wind coming from the northeast?

Answer:

South direction component equals:

$$
v_{s}=500 \frac{\mathrm{~km}}{\mathrm{~h}}+100 * \cos 45^{\circ} \frac{\mathrm{km}}{\mathrm{~h}}=570.7 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

West direction component equals:

$$
v_{w}=100 * \sin 45^{\circ} \frac{\mathrm{km}}{\mathrm{~h}}=70.7 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Therefore resultant speed of an airplane equals:

$$
v=\sqrt{v_{s}^{2}+v_{w}^{2}}=575 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Answer: $575 \frac{\mathrm{~km}}{\mathrm{~h}}$

